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ABSTRACT 

 
Rainfall exhibits extreme variability at many space and time scales and calls for a 
statistical description. Based on an analysis of radar measurements of precipitation over 
the tropical oceans, we introduce a new probability law for the area-averaged rain rate 
constructed from the class of log-infinitely divisible distributions that accurately 
describes the frequency of the most intense rain events. The dependence of its parameters 
on the spatial averaging length L allows one to relate spatial statistics at different scales. 
In particular, it enables us to explain the observed power law scaling of the moments of 
the data and successfully predicts the continuous spectrum of scaling exponents 
expressing multiscaling characteristics of the rain intensity field. 

 
 
 

1. Introduction.  
 

The intrinsic unpredictability of rainfall intensity, which varies in an irregular manner in time 
and space, makes it natural to seek a statistical description in terms of an underlying probability 
distribution. Since in the final analysis rainfall merely consists of a collection of falling raindrops 
of various sizes, the instantaneous point rain rate field is a highly singular mathematical quantity 
that becomes accessible to large-scale observation only through space and/or time averaging. In 
this respect, radar remote-sensing measurements and the traditional rain gauge measurements 
probe the rain rate field in two distinct regimes. Radar observations are a convenient way to 
measure the near-instantaneous rain rate averaged over a certain area (typically a few kilometers 
in size) determined by the intrinsic spatial resolution of the experimental setup. A sequence of 
gridded radar-derived rain maps over a larger area, typically a few hundred kilometers in size, 
can be utilized to study statistical properties of area-averaged rain. On the other hand, rain 
gauges measure time-averaged rain rate over a very small area (of the order of a few tens of 
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centimeters) that can be well approximated as a point. In this paper we seek a theoretical 
description of the statistical properties of the spatial structure of rain and introduce a new family 
of probability distributions for describing rainfall statistics, focusing on the spatial statistics of 
area-averaged rain rate derived from radar remote sensing.  
 

An interesting aspect of rainfall statistics is that they depend in a non-trivial manner on the 
length and time scales over which rain rate is averaged. There have been a number of different 
theoretical approaches to modeling the scale dependence of rain statistics. Inspired by the 
statistical theory of fully developed turbulence, phenomenological models based on 
multiplicative random cascade process have been proposed for the spatial statistics [Lovejoy and 
Schertzer 1985, Schertzer and Lovejoy 1987; Gupta and Waymire 1990, 1993], the temporal 
statistics [Veneziano et al. 1996, Menabde et al. 1997, Olsson and Burlando 2002] and the full 
space-time statistics [Marsan et al. 1996; Over and Gupta 1996; Seed et al. 1999]. These models 
aim to capture the power law dependence of the moments of the area- or time- averaged rain rate 
on the averaging scale through a description of rain statistics in terms of fractals. An alternative 
approach that leads to an explicit form of the space-time covariance of the rain rate exhibiting the 
observed power law scaling behavior is based on a stochastic dynamical equation for the spatial 
Fourier components of the point rain rate field [Bell 1987; Bell and Kundu 1996; Kundu and Bell 
2003, 2006]. The model depicts the rain field as undergoing anomalous or fractional diffusion 
driven by white noise and incorporates in a natural way the observed dependence of the 
correlation time scale on the degree of spatial averaging. The model leads to prediction of 
dynamical scaling [Kundu and Bell 2006], a form of invariance of the statistics under a combined 
space-time scale transformation observed in isolated storms by Venugopal et al. [1999]. A major 
limitation of the latter type of model is that unlike the fractal models it is restricted to describing 
only the second moment statistics. 

 
In the present work we restrict ourselves to studying the spatial statistics of rain from a 

phenomenological point of view leaving aside the temporal dependence aspects. We are 
concerned with the spatial statistics of instantaneous area-averaged rain rate rL obtained by 
averaging over an L × L square. Assuming space-time homogeneity of the statistics, the entire 
gamut of statistical properties of the non-negative random variable (RV) rL can be completely 
derived from the probability density function (pdf) f(rL;ci(L)) where ci(L) (i = 1,2, …) are a set 
parameters depending on the averaging length scale L. In this paper we propose a new candidate 
for the pdf of rL based on an analysis of a gridded data set of surface radar measurements of 
rainfall. Our study is based on a gridded precipitation data set [Short et al. 1997] constructed 
from the radar scans obtained during the Tropical Ocean Global Atmosphere -- Coupled Ocean 
Atmosphere Response Experiment (TOGA-COARE) [Webster and Lukas 1992].  

 
Spatial intermittence of rain implies that rL has a mixed distribution with a non-zero 

probability Pr[rL=0] ≡ 1 – p(L) of attaining the sharp value 0, where p(L) = Pr[rL>0] represents 
the probability that an L × L grid box contains non-zero rain. Clearly p(L) must be an increasing 
function of L. If a rain image is "coarse-grained" through a scale transformation L →  L′ = λL, 
( λ > 1), adjacent rainy and non-rainy patches are subsumed within a larger area which is 
designated as rainy; consequently p(λL) > p(L) (λ >1). Conversely, magnifying a rain image to a 
finer spatial resolution L' < L, in general reveals rainy and non-rainy areas interspersed within a 
rainy area at resolution L. Indeed it seems possible to assume that p(L) → 0 as L → 0. Radar 
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observations of rain are often well described by a power law dependence on L: p(L) ∼ Lχ (χ > 0) 
for small L, suggesting an underlying fractal structure of the support of the rain field of fractal 
dimension χ [e.g. Kedem and Chiu 1987a, Over and Gupta 1994, Kundu and Bell 2003]. The 
exponent χ represents the intermittency exponent for the spatial rain field. A class of cascade 
models, known as the β-model in the context of turbulence theory [Frisch et al. 1978], with a 
finite probability of zero generator yields a near power law dependence of p(L)  on L [Over and 
Gupta 1994].  However, the power law behavior must break down at large scales since p(L)≤1 
for all L and is expected to approach unity as L → ∞. As noted by Kedem and Chiu [1987a], the 
simple fact that p(L) depends on L already precludes the area-averaged rain rate field from being 
self-similar.  

 
A lognormal distribution has often been used to describe the continuous part of the 

distribution corresponding to rL > 0 [Biondini 1976, Lopez 1977, Houze and Cheng 1977, Crane 
1986, Kedem and Chiu 1987b], which is empirically known to be unimodal and highly skewed to 
the right with a rapidly decaying tail as rL → ∞  From a modeling perspective, lognormal 
distribution is attractive, since it naturally arises in a multiplicative process involving 
independent identically distributed (iid) RVs with a finite mean and variance because of the 
Central Limit Theorem [Feller 1971]. A lognormal multiplicative cascade model of energy 
transfer across eddy size scales was originally invoked to account for intermittency in fully 
developed turbulence [Kolmogorov 1962, Obukhov 1962]. However, there is at present no 
consensus on the “correct” pdf that describes rain rates. A number of authors have found 
evidence of departure from the lognormal distribution [e.g. Martin 1989, Pavlopoulos and 
Kedem 1992, Kedem et al. 1994, Jameson and Kostinski 1999].  Several other distributions, 
including the gamma [Ison et al. 1971] and Weibull [Wilks 1989], have also been used to 
represent statistics of precipitation data. For a recent comparative study of the lognormal and 
gamma distributions, see Cho et al. [2004]. Scale dependence of the spatial gradient of rain rate 
was explored by Kumar and Foufoula-Georgiou [1993] and Perica and Foufoula-Georgiou 
[1996] for individual storm events using wavelet transform method, who attempted to relate the 
statistical parameters to physical storm characteristics. Our primary interest is in a statistical 
description of rainfall climatology over a relatively large area and a long period of time, which 
includes the totality of all rain events as well as the non-rainy regions in a certain space-time 
volume. We find that the lognormal distribution is unsatisfactory at coarser spatial resolutions. 
This leads us to seek a new probability distribution that better represents rainfall statistics over a 
broad range of spatial scales. We confine our search within the class of the so-called infinitely 
divisible distributions for candidates suitable for describing the distribution of ln rL. They emerge 
as probability distributions of the sum of an arbitrary number of iid RVs and contain many 
distributions commonly used in hydrology, including the normal (and more generally, the Lévy 
stable), Poisson, gamma and Gumbel extreme value distributions as special cases. They also 
naturally arise in the context of a multiplicative cascade process, which involves exponentiation 
of additive iid RVs.  

 
In our search for a suitable probability distribution describing the spatial statistics of rL from 

a precipitation data set, we depart from the usual approach in which the parameters of an 
empirically chosen form of the pdf are determined by directly fitting it to the rain rate 
histograms. Instead, we develop a theoretical method in which the pdf is constructed from the 
moments of the data by utilizing some mathematical characterizations of infinitely divisible 
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distributions. A set of auxiliary dimensionless quantities constructed from the moments serve to 
guide us in identifying a suitable member of this class and the parameters of the distribution are 
estimated by fitting these functions to data. The family of distributions that we construct contains 
a certain type of Lévy-stable distribution as limiting case. 

 
An important feature of the rain rate field is that the moments of the rain intensity field 

conditional on nonzero rain m(q;L) = 〈rL
q|rL>0〉 (where angle brackets 〈…〉 denote ensemble 

average with respect to the distribution of rL  conditioned on rL>0) exhibit power law scaling 
with respect to L: m(q;L) ∝ L−η(q).  In general the scaling exponents η(q) have a nonlinear 
dependence on the moment order q – a property commonly referred to as multifractal or 
multiscaling behavior.  In the case of fully developed turbulence, the relevant quantities are the 
statistical moments of the (longitudinal) velocity difference across a distance L, 〈(δvL)q〉, and the 
spatially averaged energy dissipation 〈εL

q〉. Various phenomenological models have been used 
with considerable success to account for their scaling properties [Kolmogorov 1962, Benzi et al. 
1984, Parisi  and Frisch 1985, Meneveau and Srineevasan 1987a,b, She and Leveque 1994, 
Dubrulle 1994, She and Waymire 1995].  They lead to simple explicit formulae for the 
corresponding scaling exponents as function of q that often agree remarkably well with 
observation. See Frisch [1995] for a detailed account of multiscaling properties of fully 
developed turbulence. Power law scaling of precipitation statistics has been known empirically 
for some time and significant efforts have been made to explain it in terms of multiplicative 
cascade processes [Schertzer and Lovejoy 1987, Gupta and Waymire 1990, 1993]. While 
atmospheric turbulence certainly plays a role in determining the space-time distribution of 
precipitation, rainfall microphysics introduces additional complexity into the precipitation 
process and there is no compelling reason why the exponents resulting from turbulence models 
would as such carry over to rain statistics. From the dependence of the parameters of the 
probability distribution on the spatial averaging length L we will be able to estimate the scaling 
exponents approximately and compare the predicted values with those estimated directly from 
the moments of the data. 

 
The paper is organized as follows. In Sec. 2 we provide a brief review of the basic definitions 

and some of the mathematical properties of the infinitely divisible distributions that are needed in 
our investigation. We then describe the mathematical method employed in this paper to compute 
the pdf of a log-infinitely divisible distribution from certain auxiliary quantities constructed from 
the moments of the distribution. In Sec. 3 we give an account of the analysis of the TOGA-
COARE data set. Sec. 4 is devoted to the proposed new probability distribution with the 
necessary mathematical characterizations for comparison with data. In Sec. 5 we present the 
results in detail and discuss the various outstanding issues. Sec. 6 summarizes the main 
conclusions and suggests some directions for future work. A number of mathematical details 
relevant to our work are relegated to three appendices so as to avoid distraction. They include 
derivations of some results used in the main text and can be skipped on a first reading if desired. 
 
 
2.  Theoretical Preliminaries. 
 

The notion of infinite divisibility naturally arises within the theory of probability 
distributions of a sum of an arbitrary number of iid RVs in connection with the familiar Central 
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Limit Theorem.  The concept is originally due to de Finnetti [1929], with further seminal 
contributions by Kolmogorov, Lévy and Khintchine. Detailed mathematical expositions of the 
subject can be found in the review article by Bose et al [2002] and in the monographs by Feller 
[1971], Lukacs [1970] and Steutel and van Harn [2004]. The last one is also a very complete 
source of references to the original papers. 
 
2.1 Infinitely Divisible Distributions. 
 

In this subsection we present a number of mathematical results regarding a subclass of 
infinitely divisible distributions that arise in our investigation. 

 
A RV X is said to be infinitely divisible if for every positive integer n, X can be expressed 

(in distribution) as the sum of n iid RVs Xn,j (j = 1, 2, …, n). The characteristic function (CF) φ(t) 
≡ E[eitX] =

! 

"#

#
$ g(x)eitxdx is the n-th power of φn(t) (E[…] denote expectation value), the CF of 

Xn,j, i.e. φ(t) = [φn(t)]n. The pdf of X, namely g(x) (which is given by the inverse Fourier 
transform of φ(t)) is the n-fold convolution of gn(x), the pdf of Xn,j; symbolically, g(x) = [gn(x)]*n. 
In the context of rainfall statistics X will represent a logarithmic rain rate variable to be 
introduced later. 

 
A random process consisting of stationary independent increments naturally leads to an 

infinitely divisible distribution. Consider a sequence of RVs Y(λ) parameterized by a real 
variable λ such that the difference Y(λ+λ0) − Y(λ0) = X(λ)  is function of λ alone and the 
increments Xn,k = Y(λk) − Y(λk−1) (k = 1, 2, …, n) are iid RVs, where λ0, λ1, …, λn−1, λn = λ+λ0 are 
a set of (n+1) equally spaced points separated by λ/n. Since each Xn,k is distributed like X(λ/n) 
and the choice of n is completely arbitrary, it follows that X(λ) is infinitely divisible. 

 
Next we state a fundamental result giving a necessary and sufficient condition that a 

function φ(t) is the CF of an infinitely divisible distribution [see e.g. Lukacs 1970, Steutel and 
van Harn 2004]: 
 
The Lévy canonical representation – A complex-valued function φ(t) of a real variable t is the 
CF of an infinitely divisible distribution iff  it can be expressed in the form 
 
 

  

! 

" t( ) = exp i#t $ 1

2
% 2
t

2 + e
itu $1$

itu

1+ u2

& 

' 
( 

) 

* 
+ 

R\ 0{ }
, dH(u)

- 

. 
/ 

0 

1 
2  ,  (2.1) 

 
where κ is real, σ2 is real and ≥ 0, and H(u) is a non-decreasing function (the Lévy spectral 
function) on (−∞,0) and (0,∞), i.e. H′(u) ≥ 0 (prime denotes derivative w.r.t. u), so that  H(u) → 0 
as u → ± ∞ and 

! 

u
2
dH u( )

["# ,# ]\ 0{ }
$  is finite for every ε > 0. The representation is unique. 

Eq. (2.1) allows one to represent an infinitely divisible distribution as a sum of a Gaussian 
distribution and a limiting sum of compound Poisson distributions. 
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 The four parameter Lévy stable distributions Sα(c,β, κ), where α (0<α<2) is the stability 
index, and β (–1≤β≤1), c (0<c<∞) and κ (–∞<κ <∞) are, respectively, the asymmetry, scale and 
location parameters, constitute an important subclass of infinitely divisible distributions.  The 
α=1 Lévy stable distributions are distinguished from the others by their unusual transformation 
property under a rescaling of variables and have to be treated separately. The maximally 
asymmetric distribution S1(c,−1, 0) turns out to play an important role in the course of our 
investigation. It has the CF 
    

! 

" t( ) =  exp #c t + 2i /$( )ct ln t[ ]  
 
See Appendix A for a short review and Samorodnitsky and Taqqu [1994] for further details of 
various properties of the stable distributions. 
 

From the CF φ(t) one can construct a function a(q) = E[eqX] of a real variable q via 
analytic continuation it → q, assuming that one does not encounter singularities in the complex t-
plane. The quantity a(q) has the mathematical interpretation of being the q-th order moment of 
the RV Y = eX. Note that a(q) can also be regarded as the moment generating function for X. The 
Taylor expansion of a(q) at q = 0, if it exists, yields the successive integer order moments of X. If 
the distribution of X is infinitely divisible, one can easily derive an integral representation of a(q) 
from the Lévy canonical representation (2.1). For the purpose of our intended application to the 
rainfall problem, guided by hindsight (see discussion at the end of Sec. 5), we limit ourselves to 
the special case 

 
     

! 

" 2 = 0,  H u > 0( ) = 0.     (2.2) 
 
Letting u→−u and introducing h(u) = H(−u)  when u > 0 we obtain the integral representation 
 

! 

lna q( ) = q" + 1# e#qu #
qu

1+ u2
$ 

% 
& 

' 

( 
) 

0+

*

+ dh u( ).   (2.3) 

 
The maximally asymmetric Lévy stable distribution S1(c,−1, 0) corresponds to the choice h(u) = 
(2c/πu) (u > 0) and in this case for q > 0, a(q) is given by the simple formula [Gupta and 
Waymire 1990, Samorodnitsky and Taqqu 1994] 
 
    

! 

ln a q( ) = 2c /"( )q lnq       (2.4) 
 
Note that it has a singularity at q = 0, consistent with the fact that the moments of X do not exist 
for this distribution. The distribution is strongly skewed to the left; it has a power law tail at large 
negative X   
 

! 

 Pr X < "x[ ] ~ 2c /#( )x"1
,   x$%    (2.5) 

 
but falls off steeply at large positive X [Samorodnitsky and Taqqu 1994] 
 



 

7 

   

! 

Pr X > x[ ] ~
1

2"
exp #

"x /2c( ) #1

2
# e "x / 2c( )#1

$ 

% 
& 

' 

( 
)  ,   x*+.  (2.6) 

 
2.2 Application to rainfall statistics. 
 

The results summarized above are now applied to the problem of interest, namely quest 
for the distribution of the rain rate variable rL within the class of log-infinitely divisible 
distributions. . Since the rain rate is governed by a mixed distribution, the normalization of the 
pdf describing the continuous part of the distribution can be expressed as 

    

! 

dr
L
 

0

"

# f rL ;ci L( )( ) = p L( ).    (2.7) 

where p(L) = Pr[rL>0]. We define 

  

! 

µ q;L( ) " rL
q = drL  rL

q

0

#

$ f rL ;ci L( )( )     (2.8) 

as a function of the moment order q where q is a real variable. When q > 0, µ(q;L) are to be 
interpreted as the unconditional moments of rL. Moreover, p(L) = limq→+0 µ(q;L). The moments 
conditional on non-zero rain are given by 
 

  

! 

m q;L( ) " rL
q | rL > 0 = µ(q;L)/p L( )     (2.9) 

 
and are meaningful for all q, both positive and negative. For convenience, we introduce the 
“dimensionless moments” 
 

! 

a q;L( ) = m q;L( )/ m 1;L( )[ ]
q

.    (2.10) 
 
Note that by definition a(0;L) = a(1;L) = 1. When expressed in terms of the dimensionless 
logarithmic rain rate variable 
      xL = ln [rL/m(1;L)] = ln [p(L) rL/〈rL〉],   (2.11) 
 
the function a(q;L) has the simple interpretation  
 

     

! 

a q;L( ) = E exp qxL( )[ ] "
q
n

n!n= 0

#

$ E xL
n[ ] ,    (2.12a) 

 
i.e. a(q;L) is the moment generating function of the RV xL, (the condition rL > 0 being 
automatically satisfied in the expectation value E[…] computed with respect to the distribution 
of xL). In classical probability theory the coefficients of the Taylor series expansion of ln a(q;L) 
at q = 0 define the successive cumulants of xL: 
 

    

! 

ln a q;L( ) =
"n L( )
n!n=1

#

$ q
n      (2.12b) 
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This cumulant expansion later plays a central role in our analysis. The pdf of the variable xL, 
g(xL;L) (which has L-dependence through xL as well as through the parameters of the 
distribution) is given by the expression 
 

g(xL;L) = rLf (rL;ci(L))/p(L).    (2.13) 
 
It is the inverse Fourier transform of the CF φ(t;L) = E[exp(itxL)], i.e. 
 

     

! 

g xL;L( ) =
1

2"
dte

#itxL

#$

$

% & t;L( )    (2.14) 

 and is normalized as 
 

      
  

! 

dx
L
 

"#

#

$ g xL;L( ) =1.     (2.15) 

Since the pdf of a distribution is necessarily nonnegative, it follows from a classical result 
[Bochner’s theorem; see e.g. Lukacs 1970] that φ(t;L) is a positive definite function, i.e. satisfies 
the inequality (bar denotes complex conjugation) 
 

     

! 

" tk # t j ;L( )$ k
j=1

n

%
k=1

n

% $ j & 0  

for all n≥1, real tj, tk and complex ξj, ξk (j,k = 1,2, …,n). 
 
 The ideal approach would be to construct the pdf g(xL;L) from the dimensionless moment 
function a(q;L) determined from the data for all q. However attempts to describe the moment 
data in terms of simple empirical functions in general yield a non-positive definite function 
φ(t;L) thus leading to potential candidates for the pdf that become negative in certain ranges of xL 
and are therefore mathematically unacceptable. In order to overcome this obstacle we restrict 
ourselves to the family of infinitely divisible distributions for which an explicit representation of 
a(q;L) can be constructed. 
  

In particular, we wish to consider the case when the distribution of xL belongs to the 
subclass satisfying Eq. (2.2) and characterized by a Lévy spectral function h(u;L) with the 
following properties: (i) h(u;L) is a non-increasing function, i.e. h′(u;L) ≤ 0 on (0,∞), (ii) 
h(u;L)→0 faster than exponential as u → ∞ and (iii) the integral  

! 

u
2
dh u;L( )

0

"

#  is finite for every 
ε > 0. The conditions (i) and (iii) are the same as in Eq. (2.1), while the more stringent fall-off 
behavior of h(u;L) in condition (ii) ensures the convergence of the integral representation given 
by Eq. (2.3) for all q. Under these conditions it is possible to re-express the function ln a(q;L) in 
the simpler form (see Appendix B for derivation)   
 

  

! 

ln  a q;L( ) = q du h(u;L) e
"u " e"qu[ ]

0

#

$  .      (2.16) 
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The problem of finding a suitable distribution within this subfamily thus reduces to finding a 
suitable function h(u;L) so that the theoretically computed a(q;L)  agree with those estimated 
from data.  
 
For a lognormally distributed rL (i.e. normally distributed xL), one has the simple form [Aitchison 
and Brown 1957] with a parabolic q-dependence, 
 

! 

ln a q;L( ) = 1

2
" 2

L( ) q2
# q( ) ,    (2.17) 

 
where σ2(L) is the variance of xL. It arises as the special case σ2 ≠ 0, H(u) = 0 in Eq. (2.1) and 
will turn out not to describe the large order moments of radar precipitation data well. 
 
 
 
3.  Data Analysis. 

 
Our analysis utilizes a gridded precipitation data set described in [Short et al. 1997]. The 

data set was constructed from radar scans that were collected during TOGA-COARE, an 
experimental campaign conducted in the tropical western Pacific during the period November 
1992 to February 1993 using two ship-borne Doppler radars (labeled TOGA and MIT). The 
entire data set consists of 101 days of observation divided into three approximately month-long 
“cruises” in which radar images were available about every ten minutes. In this paper we present 
results based on the data obtained during Cruise 3, which contains 4380 merged rain images 
from both radars. Each rain image consists of a 278 × 278 array of pixels 2 km × 2 km in size. 
The statistics were collected from 128 ×128 km2 areas concentric with the circular radar fields of 
view, as in Kundu and Bell [2003]. Statistics for all L × L sub-areas with L = 2, 4, 8, …,128 km 
were computed by aggregating the L = 2 km single pixel data.  Only those grid boxes in a rain 
map were used for which at least 95% of the box had valid data. This was done in order to 
exclude boxes, especially those at the smaller scales 4, 8, and 16 km located near the center, 
which occasionally suffered from data dropout. The algorithm for moment computation was 
formulated in double precision arithmetic and was tested to ensure that the results are not 
compromised by machine round-off error. 

 
We note that the rain rate variable rL is to be interpreted as the spatial average of an 

underlying instantaneous point rain rate r(x,t) (which itself is not directly measurable) over an  
L × L grid box, i.e.  rL ≡  rL(t) = 

! 

L
"2

r x,t( )
L#L
$ d

2
x . The mean rain rate 〈rL〉 ≡  µ(1;L) would in 

general not be independent of L (and time) unless appropriate spatio-temporal homogeneity 
assumptions are made regarding the statistics of the random variable r(x,t) over the entire area of 
interest and the entire period of observation. However, given a dataset consisting of single pixel 
data at a fixed resolution L = L* (= 2 km) which defines a certain minimum scale, our coarse-
graining procedure automatically enforces the condition 〈rL〉 = 〈rL*〉 ≡  〈r〉 at each explored spatial 
scale L ≥ L* up to the largest scale L = L0 (= 128 km). The quantity 〈r〉 can then be interpreted as 
an estimate of the (scale-independent) mean of the probability distribution we seek for describing 
the rain rate statistics over the entire L0 × L0 area and for the entire observation period 0 ≤ t ≤ T 
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under the presumed homogeneity conditions. Ideally, one should also test the data for statistical 
homogeneity — a somewhat arduous task that we have refrained from carrying out in detail. 

 
For the MIT radar, about 78.3% of the pixels had valid data and of the latter about 10.6% 

had non-zero rain. For the TOGA radar the corresponding fractions are 76.0% and 8.4% 
respectively. Most of the missing data was from images taken when one of the radars was not 
operational. At each spatial scale L, the quantities p(L) and the moments m(q;L), and from them 
the dimensionless moments a(q;L) were evaluated for various values of q between −2 and 10. 
Also the appropriately normalized rain rate histograms were computed for each L in equal 
intervals of 

  
xL = ln[p(L)rL/〈r〉].     (3.1) 

  
For MIT and TOGA Cruise 3, the mean rain rate was estimated to be 〈r〉 = 0.200 ± 0.036 and 
0.155 ± 0.035 mm h-1 respectively. The standard error estimates are obtained under the 
assumption of (asymptotic) normality of the sample mean (by virtue of the Central Limit 
Theorem, even though the individual rL are markedly non-gaussian). Although the successive 
radar scans are about 10 min. apart and as a result there are a large number of images available 
(N = 4380), the values of rL for L = 128 km are strongly time-correlated and therefore cannot be 
treated as independent samples. We assume an exponential time autocorrelation typifying red 
noise in order to make use of an error estimate obtained by Leith [1973]. Leith’s estimate can be 
expressed in the form sL/√Neff , where sL

2 is the variance of rL, Neff = T/(2τL) is the effective 
number of independent samples in the time series of length T ≈ 30 days and τL is the (1/e)-
folding autocorrelation time of rL. For MIT and TOGA Cruise 3, Kundu and Bell [2003] found 
the values sL

2 = 0.17 and 0.12 mm2 h−2, τL = 2.8 and 3.6 h, which yield Neff ≈ 129 and 100 
respectively. An obvious caveat in this computation is that contrary to the assumption made in 
Leith’s [1973] original derivation, the observed lagged autocorrelation functions are in general 
markedly non-exponential. Nonetheless, we believe that the error estimates have the right order 
of magnitude. 
 
 
4. The Proposed Distribution.    
 

In order to search for an appropriate candidate for the rain rate distribution, we examined 
the q-dependence of the dimensionless moments a(q;L) for each L (“the moment curves”, Fig.1). 
It was found convenient to carry this out in terms of the auxiliary variable  
 
    

  

! 

" q;L( ) = q#1 ln  a q;L( )      (4.1) 
 
We find that when q > 1, a(q;L) closely obeys the formula 
 

    

! 

ln  a q;L( ) " 2 /#( )c L( )q lnq ,                          (4.2) 
 
where c(L) > 0,  characterizing a log-S1(c,−1,0) distribution [see Eq. (2.4)], but crosses over to a 
different q-dependence when q < 1. Systematic departure from Eq. (4.2) at small q becomes 
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apparent when one examines the plots of Λ(q;L) vs. q (Fig.1). In fact it is found that the 
numerical behavior of Λ(q;L) as function of q near q = 0 is strongly indicative of continuity of 
the slope Λ′(q;L) ≡ dΛ(q;L) /dq at q = 0 instead of the 1/q divergence predicted by (4.2). If rain 
rates were lognormally distributed, one would have had, according to Eq. (2.17), ln a(q;L) ∝ 
q2 − q, and consequently Λ′(q;L) = const. for all q. This also explains why a nonzero σ2 in Eq. 
(2.1) is not favored by data: any such term would lead to a quadratic dependence on q at large q 
in Eq. (4.2).  
 

The asymptotic large-q behavior Eq. (4.2) implies that the right tail of g(xL;L) 
representing the high rain rate events resembles that of the stable distribution S1(c,−1,0) which 
drops off precipitously  as xL → ∞ (rL → ∞) as indicated by Eq. (2.6). The large-q behavior of 
a(q;L) is governed by small-u behavior of the Lévy spectral function h(u;L) in the integrand of 
Eq. (2.16) and vice versa. Since the distribution S1(c,−1,0) corresponds to the choice h(u;L) = 
2c(L)/πu in Eq. (2.16), we surmise that an appropriate modification will need to preserve the u−1 
dependence near the origin. We find that the simple choice  
 

! 

h u;L( ) =
2c L( )/"u     ;  u # b L( )

0                 ;  u > b L( )

$ 
% 
& 

' & 
 ,    (4.3) 

 
where c(L) and the cut-off b(L) are scale-dependent parameters, in fact reproduces the essential 
aspects, if not the details, of the q-dependence of the moments including both  the large-q 
behavior given by Eq.(4.2), as well as the behavior near q = 0 (Fig. 1). 
 

For the infinitely divisible distribution defined by the choice Eq. (4.3) for h(u;L), the 
integral (2.16) converges for all q and yields the explicit formula  
 

    

! 

ln  a q;L( ) = 2 /"( )c L( )q lnq + Ei #b L( )( ) #Ei #b L( )q( )[ ] ,  (4.4) 
 
where Ei(x) = −

! 

"x

#
$ dt(e−t/t) denotes the exponential integral function [Abramowitz and Stegun 

1972]. Eq. (4.4) predicts that, despite its appearance, ln a(q;L) is in fact analytic at q = 0 and can 
be written for small q as a series expansion (the logarithmic branch point singularities cancel) 
 

ln a(q;L) = q(q−1)[ c0(L) + c1(L)q + c2(L)q2 +  …].    (4.5) 
 
The coefficients c0(L), c1(L) etc. are simple linear combinations of the cumulants  κn(L) 
introduced in Eq. (2.12b): c0 = −κ1, c1 = −(κ1+ ½ κ2), etc.. Moreover, in view of the series 
expansion [Abramowitz and Stegun 1972] 
 

   

! 

Ei "x( ) = # + lnx +
"x( )

n

n. n!n=1

$

%           x > 0( )  

 
they can be expressed in terms of c(L) and b(L):  
 

c0 = (2c/π)[γ + ln b − Ei(−b)], c1 = c0 −(2cb/π), c2 = c1 + (1/2.2!)(2/π)cb2,  (4.6) 
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 and so on (suppressing the L-dependence for ease of notation), where γ = 0.5772 … denotes 
Euler’s constant. We remark that Eq. (4.4) involves an overall compromise, which sacrifices 
slightly the quality of fit at large q in order to achieve an acceptable fit at small q. It generates an 
additional subdominant term linear in q that survives at large q in contrast to the simpler Eq. 
(4.2), which by itself fits the large order behavior of the moments quite well. Finally, we note 
that since the function a(q;L) defined by Eq. (4.4) is an entire function (i.e. analytic in the entire 
complex q-plane), it immediately follows that our postulated probability law for rL has finite 
moments of all orders q, both positive and negative. 
 
 A limiting case of interest arises when c → ∞, b → 0 in such a way that cb tends to a 
finite value. In this limit c0 = 2cb/π and the higher order coefficients c1, c2 etc. all vanish as 
successive powers of b. The series expansion Eq. (4.5) then reduces to the simple parabolic form 
(2.17) with σ2 = 2c0 = 4cb/π and consequently the new distribution approaches a lognormal 
distribution. 
 

For the CF φ(t;L)  we obtain after carrying out an analytic continuation q → it  
 

    

! 

ln  " t;L( ) = 2 /#( )c L( ) $ tSi b L( ) t( ) + it ln t $Ci b L( ) t( ) + Ei $b L( )( ){ }[ ] , (4.7) 

 
where Si(z) =

! 

0

z
" dt (sin t/t) and Ci(z) = −

! 

z

"
# dt (cos t/t) are the standard sine and cosine integral 

functions [Abramowitz and Stegun 1972]. 
 
 
5. Results and Discussion.  

 
Because of the intricate relationship between the moments and the overall shape of the 

pdf, obtaining a set of parameter values that best describe the data proved to be a somewhat 
delicate problem. We first obtained a preliminary estimate by leaving 〈r〉 and p(L) fixed at their 
sample values and evaluating c(L) and b(L) by a nonlinear least squares fit to the moment curves 
through Eq. (4.4) in the range  0≤q≤10 using the routines provided by Press et al [1995]. The 
estimates of c(L) and b(L) thus obtained were found to be linear in ln L to considerable accuracy. 
They were taken as starting point for constructing the pdf g(xL;c(L),b(L)) from φ(t;L) by 
numerically evaluating the inverse Fourier transform for each L. We sought to improve the 
estimates by examining the overall quality of the fit to the rain rate histograms. The final 
parameter choices obtained by essentially a trial-and-error approach represent our best effort to 
reproduce both the moment curves and the observed histograms as faithfully as possible. They 
are listed in Table 1. (See Appendix C for some computational details). We see that the 
computed pdfs for both MIT Cruise 3 and TOGA Cruise 3 fit the observed rain rate histograms 
fairly well over the entire explored range of spatial scales (Fig. 2). This is also supported by the 
quantile plots showing the k-th quantile, xL*(k) (0 < k < 1) satisfying the equation Pr[xL ≤ xL*(k)] 
= k computed from sample data against those predicted from the model. Fig. 3 shows these plots 
for quantiles k in the range 0.001 ≤ k ≤ 0.999. They reinforce the conclusion that the proposed 
distribution successfully reproduces the observed frequencies of high rain rate events. It correctly 
reflects the gradual change in the shape of the distribution with the increase of L, as more and 
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more areas of zero rain interspersed among the rainy areas are averaged together. In particular, it 
accounts for the slowly decaying tail at lower rain rates that becomes increasingly pronounced at 
larger L, an effect not explained by a lognormal distribution. Fall-off of the pdf at high rain rates 
governed by the tail behavior (2.6) is much more rapid than what would be expected from a 
lognormal distribution. It can be argued that the observed pdfs for intermediate L are more 
representative of the “true” statistical behavior of precipitation since spatial aggregation serves to 
smooth out possible data preparation artifacts introduced at the original grid scale. Such artifacts 
can arise, for example, from radar algorithm error due to misclassification of rainy pixels into 
convective/stratiform types and from uncertainties in detecting low rain rates at the intrinsic 
spatial resolution of the radar. On the other hand, as L becomes large and comparable to the 
synoptic scale, one can expect effects of spatial inhomogeneity to distort the results. We also 
notice a systematic discrepancy between the data and the model at low rain rates that 
prominently appears in the quantile plots in Fig. 3. We find that as k → 0, the data quantiles 
rapidly flatten out to a constant value of xL corresponding to a minimum nonzero rain rate rL of 
about 0.01 mm h−1 at the pixel scale L = 2 km that is registered by the radar whenever it detects 
rain. We interpret this as a low rain sensitivity threshold for the radar possibly arising from its 
intrinsic electrical noise. The discrepancy between the data and the model may therefore be due, 
at least in part, to the radar measurements of low rain rates being inherently unreliable and 
possibly noise-limited. The difficulty of detecting low rain rates may also affect identification of 
the support of the nonzero rain field, i.e. estimates of the parameter p(L).  The other TOGA-
COARE data subsets also exhibit similar general behavior with only minor individual 
differences, except for TOGA Cruise 1 in which a second weak mode seems to appear in g(xL) at 
very low rain rates as L is increased. 
 

Fig. 4 depicts the scale dependence of the model parameters ln p(L), c(L) and b(L) 
regressed against ln L. Fit to a power law p(L) ∝ Lχ  yields an estimate of the intermittency 
exponent χ:  χ ≈ 0.531 for MIT Cruise 3 and χ ≈ 0.546 for TOGA Cruise 3.  From Eq. (4.2) upon 
setting q = 2 it follows that 
  

  

! 

c L( ) " 
#

4
 log2

p L( )µ 2;L( )
r
2

$ 

% 
& 
& 

' 

( 
) 
) 

=
#

4
 log2 1+* 2 L( )[ ],  (5.1) 

 
where θ(L) denotes the coefficient of variation conditional on rL > 0. Based on radar and rain-
gauge data sets it has been suggested that θ(L) is independent of L [Short et al. 1993]. Our results 
show that this is not true in the present data set. As L → ∞, one expects that p(L) → 1, µ(2;L) → 
〈r〉2, so that θ(L), c(L) → 0. This is consistent with the trend seen in Fig. 4. However, it should be 
emphasized that the linear dependence on ln L implied in the regression can only be valid in a 
limited range of scales since the model parameters are restricted by the inequalities p(L) ≤ 1, c(L) 
> 0, b(L) > 0. 
  

In order to explore the scaling behavior of the moments we examine plots of ln m(q;L) vs. 
ln L for L between 2 and 128 km and q between −2 and 10 computed from data (Fig. 5). The 
linear regressions reveal an approximate power law relationship 
 

  

! 

m q;L( ) ~ L
"# q( )      (5.2) 
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in this range of spatial scales yielding a set of “mean” scaling exponents η(q). By definition [Eq. 
(2.9)] η(0) = 0 and since the unconditional mean µ(1)≡〈r〉 is independent of L, it follows that 
η(1) = χ, the intermittency exponent. An exact power law scaling of all the moments with 
computable exponents would automatically follow from our probability model if ln p(L) and c(L) 
are linear functions of ln L and b(L) is a constant. This is however not actually the case since all 
three of our model parameters that fit the data exhibit nontrivial L-dependence; ln p(L), c(L) and 
b(L) are all found to be roughly linear in ln L (Fig. 4). Nevertheless we still find that, for a wide 
range of values of q, a power law scaling empirically holds to a good approximation, and 
moreover, the exponents η(q) can be fairly accurately determined from just its observed values 
for the q =  ½, 1 and 2 moments. The continuous spectrum of scaling exponents determined from 
the model therefore describes the multiscaling characteristics of the rain field. However, a more 
careful analysis shows ln m(q;L) to be nonlinear in ln L implying that the exponents defined by 
Eq. (5.2) are actually slightly L–dependent.  
 

To understand the origin of the observed approximate power law scaling we represent    
ln m(q;L) and ln a(q;L) in the form of power series in ln L. To the extent the quadratic and higher 
order terms can be neglected, the coefficient of the ln L term can be identified as the scaling 
exponent introduced in Eq. (5.2). (A similar multiscaling analysis based on cumulant expansion 
of a distribution has also been employed recently by Venugopal et al. [2006].) Although in 
general ln a(q;L) has an intricate joint dependence on q and L, for the purpose of estimating the 
scaling exponents, it is convenient to employ separate approximations for “large q” (q ≥ 1) and 
“small q” (|q| ≤ 1) with separable q- and L-dependence. To this end we replace Eq. (4.4) by the 
following approximation: 
 

             

! 

lna q;L( ) "
2 /#( )c L( )qlnq              ; (q $1)

q
2 % q( ) c0 L( ) + c1 L( )q[ ]       ; (%1 < q <1)

& 
' 
( 

 .   (5.3) 

 
where c(L), c0(L) and c1(L) are assumed to be linear in ln L. We then match the exponents at  
q = 1, ½ and 2 with the observed values by joining the derivative dη(q)/dq continuously across   
q = 1. A little computation leads to the following simple formula for η(q): 
 

     

! 

" q( ) #
$q +%qlnq                                       ; (q &1)

$q + % + '( ) ( 2% + '( )q[ ] q ( q2( )    ; ((1< q <1)

) 
* 
+ 

,  (5.4) 

 
where α = [−2χ+η(2)]/(2 ln2) and β = 4[−χ+2η(½)], with α ≈ 0.079, β ≈ −0.066 for MIT Cruise 
3 and α ≈ 0.178, β ≈ −0.005 for TOGA Cruise 3. Results from Eq. (5.4) are plotted in Fig. 6 
along with the exponents estimated from data (with error bars representing 95% confidence 
intervals estimated during the least squares fit to Eq. (5.2)) and those predicted from a simple 
lognormal distribution obeying Eq. (2.17), namely, 
 

! 

"
LN
q( ) = #q +

1

2
$2# +" 2( )[ ] q2 $ q( ).     (5.5) 
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The agreement between the predicted and the measured exponents is quite striking, especially 
considering the heuristic nature of the arguments leading to Eq. (5.4). Only the scaling 
exponents of the moments of order q ≈ 1 apparently suffer slightly from the artifacts of our 
approximation. Not unexpectedly, the model estimates of η(q) based on the approximation (5.3) 
deviate increasingly from the observed values as q becomes more and more negative. In contrast, 
the lognormal model fares rather poorly in predicting the exponents as q becomes large. The 
constants c0(L) and c1(L) estimated from a least squares fit to Λ(q;L) vs. q near the origin are 
given in Table 1 with the estimated standard errors. We find that the assumption of linearity in ln 
L anticipated in our explanation of power law scaling holds reasonably well in the data. Also 
included are the values of c0(L) and c1(L) computed from the parameters c(L) and b(L). We see 
that while the two values of the leading coefficient c0(L) agree well, for c1(L) the agreement is 
rather poor.  This can be attributed to the fact that the series expansion Eq. (4.5) for ln a(q;L) 
converges rather slowly and the terms beyond the second are not negligible when |q| ≈ 1. 
 

Αt this point it is appropriate to recognize some caveats in our analysis. A complete 
evaluation of the pdf ideally involves knowledge of the function ln a(q;L) for all q, both positive 
and negative. The asymptotic behavior (4.2) of the moments at large positive q appears to be a 
robust feature at all spatial scales as evidenced by the fact that the predicted pdf correctly 
captures the steep fall-off of the observed histogram at each L. Thus our proposed distribution 
accurately describes the relative frequency of spatial occurrence of heavy rainfall. However the 
q<0 moments depend increasingly on radar estimates of very low rain rates, and are thus 
increasingly unreliable. Our analytic continuation method of inferring the form of the entire 
characteristic function φ(t;L) for all real t implicitly involves additional working assumption 
about its analytic behavior. The specific distribution that we have proposed based on observed 
dependence of the moments as function of q, has the conceptual advantage that the 
corresponding ln a(q;L) function given by (4.4) is an entire function, i.e. has a convergent Taylor 
series expansion everywhere in the complex q-plane. However, as mentioned above, practical 
usefulness of the expansion (4.5) is limited by its slow convergence. Nonetheless, analyticity at 
q=0 allows us to extend the function a certain way into the region of negative q. We have 
decided somewhat arbitrarily to limit ourselves to theoretically exploring the moments only up to 
q = −1. As seen from Fig. 1, the actual Λ(q;L) computed from data deviates increasingly from its 
model-predicted form as q becomes negative. Departure of the shape of the moment curve from 
the model behavior is seen by examining its slope Λ′(q;L) which was also estimated from data. 
For Λ′(q;L) the proposed probability distribution predicts the simple form 

 
   

! 

" # q;L( ) = 2c L( ) /$q( ) 1% e%b L( )q( )    (5.6) 
 
which increases monotonically as q decreases. For each L the observed shape generally agrees 
with the above form up to a certain minimum q where Λ′(q;L) attains a local maximum and then 
subsequently decreases slightly after rapidly flattening out. This departure at negative q is 
consistent with the fact that the pdf appears to systematically underestimate the low rain rate tail 
of the histograms at all spatial scales. It remains to be seen whether the discrepancies between 
the observed histograms and the model pdf are real and statistically significant. 
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Limited experimental access to the negative q moments implies a limitation of our 
knowledge of the corresponding scaling exponents. However, in view of the analyticity at q=0, 
there appears to be no drastic change in behavior as one crosses over from positive to negative q 
regime. The approximation (5.3) employed to estimate the scaling exponents is designed to 
preserve the leading asymptotic behavior of the exact model expression for ln a(q;L) [Eq. (4.4)] 
for large positive q at the expense of altering somewhat the analytic behavior near q = 0. 

 
Our method of estimation of c(L) and b(L) can perhaps be improved. The nonlinear least 

squares algorithm that we used to obtain the initial estimates by fitting Eq. (4.4) led to large error 
estimates for these parameters, especially b(L),  forcing us into the trial-and-error approach. In 
retrospect, this is not surprising since the log-Lévy-like tail at high rain rate corresponds to the 
limit in which b(L) tends to infinity but the rest of the pdf requires a much smaller b(L). Broad 
internal consistency of our estimates is corroborated by the fact that fitting the parameters to the 
simple form of Λ′(q;L) given by Eq.(5.6) yields values not too far from the values obtained from 
fitting Λ(q;L). Also, one should recognize that a best fit of the Λ(q;L) function in a least squares 
sense does not necessarily lead to best overall fit for the pdf. This is because of the highly 
nonlinear (and presumably non-local) relationship between the two functions; a small range of q 
effectively controls the shape of most of the pdf curve, the large |q| moments being instrumental 
in only determining the tails of the distribution. Our estimates of the parameters should 
nevertheless be close to being optimal as evidenced by the close overall agreement between the 
computed pdf and the observed rain rate histograms. 

 
The log-infinitely divisible distribution we have proposed in this paper has finite 

moments to all order and was arrived at by attempting to match the sample moments (which of 
course are always finite) as closely as possible. In view of the complicated relation between the 
moments and the pdf noted above, it is in principle possible for a different pdf to provide an 
adequate fit to data even if its (population) moments cease to exist for orders q outside a certain 
range. This is a relevant issue since in many multifractal scenarios often the moments of the rain 
rate distribution beyond a certain maximum and/or minimum order diverge due to the presence 
of “heavy” (i.e. Pareto-like) tails [e.g. Lovejoy and Mandelbrot 1985]. In order to explore this 
possibility (at each spatial scale L), we consider a “test” pdf g0(x) ~ Cexp(−λ|x|) (λ > 0) that falls 
off exponentially as  x → ±∞. This corresponds to a power law dependence of the conditional 
rain rate pdf f0(r): f0(r) ~ rλ−1 as r → 0 and f0(r) ~ r−(1+λ) as r → ∞. (The cusp at x = 0 is 
unimportant for our arguments, since we are interested only in the asymptotic behavior). For this 
pdf the moment function a0(q) [defined by  Eq.(2.12)]  has the form a0(q) ∼ (λ2 − q2)−1 and 
consequently only the moments of order q in the range |q| < λ converge. On the other hand, for 
our log-infinitely divisible law, Eq. (4.4) predicts that moments of r exist to all orders. This in 
particular implies the absence of a Pareto-like power law right tail as r → ∞. In fact, as we have 
already noted, for large q > 0, a(q)  grows approximately like exp[(2c/π)q lnq] [see Eq. (4.2)] 
characterizing a log-S1(c,−1,0) distribution. The expression (2.6) for the tail probability Pr[X > x] 
of the associated Lévy stable distribution S1(c,−1,0) then leads to the asymptotic behavior f(r) ~ 
(r/m1)−(1−δ/2) × exp[−(1/e)(r/m1)δ], m1 = m(1;L), δ = π/2c for the pdf of r (retaining only the 
dominant term), as r → ∞. In order to investigate whether the rain rate data itself would allow a 
heavy-tailed distribution, we proceed with an elementary analysis of the tail quantiles of x. For 
the exponential distribution g0(x) a simple explicit calculation shows that the k-th quantile, x*(k) 
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obeys a linear relationship with ln(1−k) at the right tail (k ≈ 1) and with ln k at the left tail (k ≈ 0) 
with slope (−1/λ) in each case. Plots of x*(k) vs. ln(1−k) from sample x-data however do not 
exhibit any clear linear regime. Moreover, attempts to estimate the exponent λ using the standard 
Hill estimator [Hill 1975] yield values of λ that are much larger than unity, rapidly increasing as 
one considers smaller and smaller ranges of k along the right tail. This is consistent with the 
(approximate) stretched exponential falloff of f(r) predicted by the model at large r.  

 
The situation is not quite as clear with regard to the behavior of f(r) at low rain rates. As 

the moment order q → −∞, Eq. (4.4) indicates that a(q) remains finite but grows very rapidly, 
roughly like exp[(2c/π)exp(b|q|)]. This implies that f(r) tends to zero as r → 0 faster than any 
power law (but more slowly than, say, the lognormal pdf). In the absence of a closed analytic 
form, this suggestion is confirmed by a numerical exploration of the asymptotic behavior of the 
pdf g(x) at large negative x. We find that as x → −∞, the left tail of the computed g(x) can be 
accurately represented by a simple stretched exponential form g(x) ~ exp[−const.|x|ν]. The 
exponent ν (which presumably depends on the parameters c and b in an unknown way) is greater 
than unity at all explored spatial scales, ranging between the values 1.80 (L = 2 km) and 1.52 (L 
= 128 km) for MIT Cruise 3. The faster-than-exponential decay of our model pdf g(x) is clearly 
consistent with finiteness of  the moment function a(q). Over the limited range of x that is 
experimentally accessible, g(x)  is practically indistinguishable from the exponential decay of the 
test pdf g0(x) especially for larger L and both fit the left tail of the sample histograms. But 
examination of the plots of the quantiles x*(k) from sample x-data against ln k for small k do not 
reveal a linear regime at any L. However, as we have already noted earlier in this section, some 
of the disagreement between the data and the theoretical model may be attributable to the 
inherent difficulty of making accurate radar measurements of low rain rates. The empirical 
evidence for our pdf is thus somewhat less compelling in the low rain rate regime but we see no 
evidence of a power law tail at low rain rates in the available data. 

 
A final point to be noted is a rationale for our restriction to the subclass of infinitely 

divisible distributions characterized by Eq. (2.2). We have already seen that the large-q behavior 
of a(q;L) strongly favors σ2 = 0. The condition H(u > 0) = 0 can conceivably be relaxed if 
warranted by experimental data to include functions H(u) that fall off sufficiently fast at large 
positive u (faster than exponential) so that the contribution of the u > 0 portion of H(u) to the 
integral representation of a(q;L) converges for large positive q to ensure the existence of the 
moments. 
 
 
6. Conclusion.   
 

To conclude, we have introduced a new probability distribution belonging to the log-
infinitely divisible class that describes the spatial statistics of area-averaged rain rate over a 
broad range of length scales. In view of the Lévy representation (2.1), such a distribution can be 
interpreted as coming from a multiplicative random process that can be represented as a limiting 
product of log-Poisson processes. Clarifying the physical significance, if any, of such a 
representation is an intriguing problem that deserves further investigation.  

 



 

18 

The scale dependence of the theoretically computed moments of the fitted distribution 
explains the observed multiscaling of the rain rate field. This allows one to extrapolate rainfall 
statistics down to sub-grid scales for hydrological applications in a clearly defined and natural 
manner. Our method of constructing the distribution relies on moment estimation instead of 
following the traditional route of fitting an empirically chosen form of the pdf directly to the 
observed rain-rate histograms. Our choice of the Lévy spectral function h(u) should be regarded 
only as a first guess. Clearly a more systematic method of exploring the entire family of 
distributions specified by this function will be desirable. It is conceivable that a judicious choice 
of h(u) will lead to a closer fit for the pdf, perhaps at the cost of introducing more adjustable 
parameters. Since the pdf is not available in closed analytic form, formulating a systematic 
tractable method of parameter estimation remains an open problem. 
 
 It will also be of interest to explore whether the new distribution can successfully 
describe the scale dependence of statistics of time-averaged precipitation data derived from rain 
gauge measurements, which probe the temporal statistics at a point. A dense rain gauge network 
monitored over an extended period of time provides a natural way to study statistics of time-
averaged rain rate and preliminary investigations with such data appear to be encouraging. We 
hope to return to this problem elsewhere. 
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Appendix A. Lévy Stable Distributions 

 
As mentioned in the main text, the Lévy stable distribution with α = 1, β = −1 constitute 

a limiting case of the new distribution. In this Appendix we summarize, for the readers’ 
convenience, some useful properties of the Lévy stable distributions.  
 

The Lévy stable distributions Sα(c,β, κ) are obtained as a special case of (2.1) in which  
σ2 = 0 and H(u) has the form 
 

    

! 

H u( ) =
C

1
u
"#

    ; u < 0

"C
2
u
"#

   ; u > 0

$ 

% 
& 

' & 
     (A.1) 

  
where the constants C1, C2 satisfy C1, C2 ≥ 0, C1+C2 > 0. They are related to the scale and 
asymmetry parameters c and β through the formulas [Lukacs 1970] 
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The factor γ(α) in general has somewhat complicated dependence on the exponent α when α ≠ 1 
and has the value γ(1) =π/2. The CF of the family of distributions Sα(c,β, κ) has the form 
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The special case σ2 ≠ 0, H(u) = 0 represents the familiar normal distribution, which can also be 
regarded as the α = 2 limiting case of the Lévy stable distributions (the parameter β is redundant 
in this case). The α = 1 stable distributions are distinguished from the others by the fact that 
multiplication of the random variable by a constant results in rescaling of the scale parameter c 
accompanied by a nonlinear change of the shift parameter  κ and have to be treated separately. 
S1(c,0, κ) denotes the familiar Cauchy distribution. The β = −1 case is of particular interest to us 
and corresponds to the choice C2 = 0, C1 ≠ 0 above. 
 

We now list a few elementary algebraic properties these distributions. They follow 
straightforwardly from the explicit formula for the CF. More details can be found in 
[Samorodnitsky and Taqqu 1994]. 

 
Property A.1  Let X1 and X2  be two independent RVs with Xi ~ Sα(ci,βi,κi) (i = 1,2) (meaning Xi 
has the distribution Sα(ci,βi, κi)). Then X1+X2 ~ Sα(c,β,κ) with 
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Property A.2 Let X ~ Sα(c,β,κ) and let a be any real constant. Then X+a ~ Sα(c,β,κ+a). 
 
Property A.3 Let X ~ Sα(c,β,κ) and let a be any real constant ≠ 0. Then 
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In particular,  −X ~ Sα(c,−β,−κ). 
 
The moment generating function a(q) = E[eqX] is a quantity of interest to us. We have the 
following proposition: 
 
Proposition A.1. For a RV X ~ Sα(c,−1,0), the function a(q) = E[eqX] (q real and >0) is given by  
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It is ill-defined when q < 0. 
 
Existence of the function a(q) is intimately connected with the tail behavior of the distribution as 
expressed by the next proposition: 
 
Proposition A.2. Let X ~ Sα(c,β,κ) with 0 < α < 2. Then the decay rate of the tail of the 
distribution is given by 
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where 
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In the maximally asymmetric case β = −1, Proposition A.2 implies that the left tail (x → −∞) has 
power law behavior while the right tail (x → ∞) tends to 0 faster than x−α. Finding the actual fall-
off rate is a somewhat complicated problem [Zolotarev 1986] and the final result is quoted in 
[Samorodnitsky and Taqqu 1994]. For the α = 1 case the tail behavior is given by Eq. (2.6). 
 
 
Appendix B. Moment Function of Infinitely Divisible Distributions 
 

This Appendix is devoted to a description of some relevant mathematical properties of 
the moment function a(q;L) and its analytic continuation, namely the CF φ(t;L). For simplicity of 
notation we suppress the L-dependence throughout this section.  
 

We consider the functions a(q)=E[eqX] and φ(t)= E[eitX] for an infinitely divisible 
distribution satisfying the conditions (2.2). The RV X is to be identified with the logarithmic rain 
rate variable xL introduced in section 2.2.  First we derive the integral representation of ln a(q) 
given in Eq. (2.16). Starting from Eq. (2.3), namely 
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obtained from analytic continuation of the Lévy canonical representation Eq. (2.1), we eliminate 
the location parameter κ  using the condition a(1) = 1, leading to a simpler form 
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! 

lna q( ) = dh u( ) 1" e"qu( ) " q 1" e"u( )[ ]
0

#

$  ,   (B.1) 
 
We should emphasize that for the formal analytic continuation to yield a well-defined a(q), it is 
necessary for the integral to converge. When q > 0, the integral indeed converges since h(u) is a 
non-increasing function of u, i.e. h′(u)≤0 on (0,∞). The convergence is not automatic when q < 0; 
to guarantee convergence for all q, in addition it is necessary that the function h(u) tend to zero 
faster than e−const.u as u → ∞. Otherwise one is led to divergent negative order moments of eX.  
 
 The expression (B.1) can be simplified further. An integration by parts yields 
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The boundary terms at the origin cancel identically even when the function h(u) is singular there. 
An examination of the first and second boundary terms at infinity show that they vanish 
individually for all q by virtue of the boundary conditions imposed on h(u) by the Lévy canonical 
representation. The third term at infinity also vanishes with the additional condition that h(u) 
tends to zero faster than exponential as u → ∞. Then only the last term survives yielding 
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which is Eq. (2.16). Since the spectral function h(u) satisfies h′(u)≤0 on (0,∞) and tends to zero 
as u→∞, it follows that h(u)≥0 on (0,∞). Notice that in the absence of the additional fall-off 
condition on h(u), the third boundary term at infinity would also survive and would in general 
diverge when q < 0. 

 
Next, we explore the analytic behavior of the function a(q) defined by Eq. (B.2) which is 

conveniently rewritten in the form 
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Clearly, Λ(1) = 0 and Λ(0) < 0.  Differentiating under the integral sign we compute the 
successive derivatives of the function Λ(q) with respect to moment order q: 
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and so on. Since the function h(u) satisfies h(u)≥0 on (0,∞), it follows that Λ(q) is completely 
monotone, i.e. the successive derivatives of Λ(q) alternate in sign: Λ′(q) > 0, Λ″(q) < 0, etc. The 
Taylor series expansion of the function Λ(q) at q=0, Λ(q) = ∑n=1

∞(κn/n!)qn−1 (if it exists) yields 
the successive cumulants κn of the distribution of X. Since a(q)=E[eqX], equating like powers of q 
yields κ1 = E[X], κ2 = E[X2] – E2[X] ≡ Var[X] and so on. 
 

As an example of application of Eq.(B.2) we consider the maximally asymmetric log-
Lévy (β = −1) distribution. This is characterized by the choice h(u) = C/uα , where the stability 
index α  lies in the range 0<α<2. Direct computation yields, for q > 0, 
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The special case α =1 can be easily accommodated by a limiting procedure: 
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in agreement with Proposition A.1 above (up to a nontrivial centering term linear in q when 
α ≠ 1). The computation fails when q < 0 since the original integral diverges. Nonexistence of 
the negative order moments of eX is consistent with the distribution of X having a slowly 
decaying power law tail along the negative axis. 
 

Explicit computation of the function Λ(q) at various q from the moments of the 
precipitation data suggest that one might try to represent it as a Taylor series at q = 0 in the form 
(taking into account the fact that Λ(q) has a simple zero at q = 1) : 
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These coefficients are simply certain linear combinations of the various cumulants κn introduced 
above: c0 = −κ1, c0 − c1 = ½κ2, etc. They can be explicitly calculated for a specified Lévy 
spectral function h(u). The inequalities (−1)mκm > 0 (m = 1,2, …) then imply that the coefficients 
c0, c1, c2 … must satisfy the sequence of inequalities  c0>0, c1<c0, c2>c1 and so on. 
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For the new distribution defined by Eq. (4.3) the integral (B.3) converges for all q, both 
positive and negative. We have, when q>0, 
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where E1(z) = 

! 

z

"
# dt(e−t/t)  is one of the exponential integral functions of a complex variable z 

[Abramowitz and Stegun 1972]. E1(z) has a logarithmic branch point at the origin and is defined 
as an analytic function in the complex z–plane (|arg z|<π) cut along the negative real axis. It can 
be represented by a series expansion 
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where γ is Euler’s constant. The combination Ein(z) ≡ E1(z) + γ + ln z which appears in the final 
step of Eq.(B.6),  is thus analytic in the entire complex z-plane since the branch point 
singularities of the individual terms cancel each other out. This allows one to analytically extend 
Λ(q) to q < 0 as follows (even though the above formal derivation fails).  One defines the 
function Ei(x) of a real variable x as [Abramowitz and Stegun 1972] 
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Here P denotes the integral defined by the Cauchy principal value prescription at the origin 
where the integrand encounters a singularity. [This is in complete analogy with the elementary 
results ln x = −

! 

x

1

" dt/t (x > 0) and ln |x| = − P

! 

x

1

" dt/t (x < 0)]. Like the logarithmic function, E1(z) 
has a finite discontinuity 2πi across the branch cut along the negative real axis with the assigned 
values 
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The function Ei(x) can then be expressed in the form 
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Returning to the evaluation of Λ(q), we can therefore combine both cases q>0 and q<0  
into a single expression: 
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" q( ) = 2c /#( ) lnq $Ei $bq( ) + Ei $b( )[ ]    (B.7) 
 
which yields Eq.(4.4). Its derivatives are expressible in terms of elementary functions: Λ′(q) = 
(2c/π)(1−e−bq)/q and so on. Truncation of the Lévy spectral integral has the effect of rendering all 
the moments of eX finite and well defined.  
 

The CF of the new distribution is given by the integral representation 
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Explicit evaluation yields Eq. (4.6): 
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where Si(z) = 
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" dt (sin t/t) and Ci(z) = −
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# dt (cos t/t) denote the sine and cosine integral 

functions respectively [Abramowitz and Stegun 1972] and are related to the exponential integral 
function E1(z) through the formula  
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While Si(z) is an analytic function, Ci(z) inherits a logarithmic branch point singularity at the 
origin from E1(z) and can be expressed in the form 
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Ci z( ) = " + ln z #Cin z( )  
 
where Cin(z) = ∫0z dt (1− cos t)/t is an entire function of z in the complex plane. 
 
 
Appendix C. Computation of g(xL;c(L),b(L)) 
 
 

In this Appendix we outline some of the details involved in the computation of the pdf of 
the logarithmic rain rate variable xL. As before we suppress the L-dependence throughout this 
Appendix. 
 

The pdf g(x;c,b) is computed by numerically evaluating the Fourier transform integral 
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In view of the reality condition 
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where 
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Note that the functions Ci(z) and Si(z) appearing in the integrand in (C.1) need to be evaluated 
only for positive arguments. The necessary numerical routine is provided by Press et al. [1995]. 
 
 The Fourier cosine integral (C.1) is computed for a specified value of c and b by utilizing 
a numerical implementation based on Fast Fourier Transform (FFT) algorithm as described by 
Press et al. [1995]. The routine was tested with several known examples – the normal, the 
Cauchy and the S1(c,−1,0) Lévy stable distributions. In the first two cases simple analytic results 
are available. In the last case the computed pdf was checked against that obtained from an 
alternative integral representation of the pdf of stable distributions due to Nolan [1997], which 
has the numerical advantage of having a non-oscillatory integrand. For the S1(1, β, 0) distribution 
Nolan’s representation of the pdf reads (in the case β ≠ 0) 
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 No explicit analytical results are available for checking the computation of the new pdf 
g(x;c,b). However, a powerful consistency check is provided by the fact that g(x;c,b) satisfies the 
scaling identity 
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with a shift ξ given by 
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The equality was verified by explicit computation from our numerical algorithm. 
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Figure Captions 
 
Figure 1.   Plot of Λ(q) = q−1ln a(q;L) vs. q from data (open circles) compared with predictions 
from the proposed distribution, Eq.(4.4) and the parameters listed in Table I (solid line) for  
(a) L = 2 km and (b) L = 128 km for MIT Cruise 3 and TOGA Cruise 3. The level of agreement 
is similar for all other L. 
 
Figure 2.    Plot of the pdf g(xL;c(L), b(L)) vs. xL superimposed on the observed rain rate 
histograms for MIT Cruise 3 and TOGA Cruise 3 data at different spatial scales: (a) L = 2 km, 
(b) L = 8 km, (c) L = 32 km and (d) L = 128 km. The pdf (solid curve) is scaled so that the area 
under the curve equals the area of the histogram between the observed maximum and minimum 
rain rates. Agreement at the other explored scales L = 4 km, 16 km and 64 km (not shown) are 
also deemed satisfactory. 
 
Figure 3. Quantile plots of data vs. model for for MIT Cruise 3 and TOGA Cruise 3 data at 
different spatial scales: (a) L = 2 km, (b) L = 8 km, (c) L = 32 km and (d) L = 128 km. (The 
straight line represents the diagonal y = x). 
 
Figure 4. Linear regression of c(L) (solid circles), ln p(L) (solid triangles) and b(L) (open circles) 
against ln L between L = 2 km and L = 128 km for MIT Cruise 3 and TOGA Cruise 3. 
 
Figure 5.  Log-log plot of m(q;L) vs. L for selected values of q illustrating power law scaling of 
the moments for MIT Cruise 3 and TOGA Cruise 3. 
 
Figure 6.    The observed scaling exponents η(q) (solid circles) compared with the predictions 
from the new (solid line) and the lognormal (dashed line) models for (a) MIT Cruise 3 and (b) 
TOGA Cruise 3. 
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Table 1 

 
Model Parameters p(L), c(L), b(L) and related quantities for Cruise 3* 

 
(a) MIT Radar 
 

    L (km)         2          4         8        16       32       64      128 
     p(L)       0.106         0.139       0.198        0.303       0.472      0.683       0.858 
     c(L)       3.0         2.8       2.6        2.4       2.2      2.0       1.7 
     b(L)       1.0         1.6       2.2        2.8       3.3      3.9       4.6 
c0(L)(model)      1.52        2.02       2.32        2.48       2.49      2.47       2.28 
c1(L)(model)    −0.39      −0.83     −1.32      −1.80     −2.13    −2.49     −2.70 
   c0(L)(fit)   1.664(0.002)   1.928(0.001)   2.171(0.002)   2.363(0.005)   2.480(0.008)   2.458(0.011)   2.228(0.012) 
   c1(L)(fit) −0.073(0.013) −0.398(0.005) −0.777(0.009) −1.129(0.025) −1.405(0.043) −1.551(0.059) −1.496(0.067) 

 
(b) TOGA Radar 
 

    L (km)         2          4         8        16       32       64      128 
     p(L)        0.084        0.109        0.155       0.239      0.374      0.546       0.730 
     c(L)        3.5        3.2        2.8        2.5       2.2      1.9       1.7 
     b(L)        0.9        1.3        1.9        2.8       3.6      4.4       5.1 
c0(L)(model)      1.63       1.99       2.27       2.58       2.61      2.49       2.39 
c1(L)(model)    −0.37     −0.66     −1.11     −1.87     −2.43    −2.83     −3.13 
   c0(L)(fit)   1.647(0.002)   1.906(0.001)   2.151(0.002)   2.346(0.005)   2.444(0.007)  2.418(0.011)   2.413(0.014) 
   c1(L)(fit) −0.044(0.011) −0.375(0.004) −0.763(0.010) −1.124(0.026) −1.358(0.040) −1.552(0.061) −1.708(0.076) 

 
* The quantities within parentheses are the standard errors. 
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